
Architecture reviews support transparency in software  
development, they identify major risks and expose important 
tradeoffs. This cheat sheet offers a well-founded overview.

Architecture 
Reviews

IN THIS ISSUE

•  What’s the benefit of 
architecture reviews?

•  Which methods and 
tools are helpful?

•  Who should be included 
in reviews and to which 
extent?

Aspects of architecture reviews 

Various aspects can be analysed during architectural reviews. 
In isolation or combined in a wider review effort. 

Analysing the Suitability of the Architecture (SA)

•  Is there a common understanding of the architecture and its goals?

• Are the architecture concepts suitable for achieving these goals?

• Are architecture decisions subject to considerable risks?

• What are the most important tradeoffs and are they suitable?

  Analysing the inner Quality of the Architecture (QA)

•  Does the architecture comply with common best practices?

•  Is the architecture understandable, comprehensible and simple?

•  Is there high conceptional integrity? 

•  Is the architecture well-communicated and established? 

Checking if Implementation and Architecture are in sync (IC)

•   Are architecture decisions apparent on code level?

•   Are there weak spots in the implementation?

•   Do code structures correspond to the communicated architecture?

 

4No.

 What’s it about? (challenges)

  A new development effort is pending and initial solution approaches  
are being discussed. Are you and your team on the right path?

  Management has lost confidence in your solution. 
How do you win them back while radiating a sense of security?

  Different stakeholders have contradictory goals for your software.  
How do you specify and prioritise their wishes?

  Modernization, extension or larger remodelling efforts are planned.  
How do you find and communicate suitable solution approaches?

  You want to fuel iterative architecture efforts. 
How do you get continuous feedback?

http://architektur-spicker.de

Scenario-based

(Check the architecture 
against its drivers)

Tool-supported

(see Cheat Sheet #2 – 
Quantitative Analysis)

Possible ad-hoc

(Preparation can 
be very minimal)

1

architecture 
CHEAT SHEET 
Conceptual development 
expertise in a condensed 
format

Free pdf-Download of the architecture

FIND MORE CHEAT SHEETS ONLINE:

cheat sheet collection:

www.architektur-spicker.de



The typical review process

20+0,5
days days

Scaling of Reviews

P
re

pa
ra

ti
o

n
C

o
n

so
lid

at
io

n

 Determining the review goal

 • Purpose: Focus on certain challenges (see Page 1 top)
 • Determine the necessary significance of the results (confidence)

Many factors determine the size of a reviewing effort. A few important ones are:

 Consolidating the architecture drivers (Page 3)

 • Identify the top quality goals (approx. 3 – 5)
 • Flesh out quality scenarios (approx. 15 – 30)
 • Gather technical and organizational constraints

 Consolidating the architectural overview

 • Prepare the inventory of models, documents, Wikis, PoCs …
 • Compile central concepts, ideas and decisions
 • Provide top-level views: context, structure, distribution (outlined)

 Analysing the architecture (Pages 1 + 4)

 • Analyse the Suitability of the Architecture (SA)  Architecture   Architecture drivers (see step 2)
 •  Analyse the inner Quality of the Architecture (QA) Architecture   Best practices
 • Check if Implementation and Architecture are in sync (IC) Architecture   Implementation

 Aggregating findings (Page 4)

 • Cluster risks into risk topics  
 • Compile the most important tradeoffs 
 • Determine the impact on quality goals

 Documenting results

 • Provide a general statement regarding the review goal (see step 1)
 • Develop high level work packages including urgency and dependencies

1.

2.

3.

4.

5.

6.

Scaling 

the review 

http://architektur-spicker.de

ATAM – Architecture Tradeoff Analysis Method
ATAM is a theoretical basis on which many architectural reviews are built, if the Suitability of the Architecture (SA) is of concern. 
The architectural evaluation method was developed at the Software Engineering Institute (SEI) of the Carnegie-Mellon University and was 
originally published in 2000. The architecture is broken down and analysed in two workshops (the ‘core-phases’). Due to its complexity, 
smaller reviews tend to use only parts of ATAM (see scaling).

ATAMs core phases mainly support steps 2. , 3.  and 4.   of the review process above. 

Medium (two workshop days of phase 1 without preparation) to full (10-20 analysis days)

Focus: 

Process

Scaling: 

Phase 1

1. Present ATAM
2. Present business drivers
3. Present the architecture
4. Identify architectural approaches
5. Generate quality attribute utility tree
6. Analyse architectural approaches

Phase 2

7. Brainstorm and prioritize scenarios
8. Analyse architectural approaches
9. Present results

additional stakeholders attending 
(e.g. client, users, operations, customers, …)

Hiatus
(days to weeks,  
depending on findings 
from Phase 1)

•  Organisational complexity
•  Number of stakeholders
•  Criticality of the situation
•  Degree of uncertainty/disagreement

•  Required confidence
•   State of the documentation/ 

knowledge in the organisation
•  Size of the System

Factors

2

 
architecture 
CHEAT SHEET  4NO..



http://architektur-spicker.de 3

ATAMs core phases mainly support steps 2. , 3.  and 4.   of the review process above. 

Medium (two workshop days of phase 1 without preparation) to full (10-20 analysis days)

 

Roles in Architecture Reviews
Role Possible filling Tasks Relevant in  

analysis type

Reviewer Developers or architects (that are not 
part of the project/product-team),  
external experts

Define the review focus, pose questions, 
identify risks, contribute own experiences

SA, QA, IC

Architecture 
representative

Developers, senior developers, 
architects, testers

Present decisions and solutions, clarify 
problems, illustrate tradeoffs

SA, QA, IC

Stakeholder Product owner, customer, specialist  
department, (project) managers, 
enterprise architect, operations

Representing drivers and constraints, 
validate tradeoffs, appreciate topic relevance

SA, (IC)

Moderator Employees who are not part of  
the project, external evaluators

Organisation, preparation, moderation, … SA  
(workshop parts)

  Architecture drivers

Quality Scenarios 
Quality Scenarios specify quality requirements  
and have a typical structure that is quite similar 
 to User Stories:

Types of scenarios 
Various types of scenarios are available for specifying quality characteristics:

Use case scenarios
Characteristic: “Normal” usage of the system
Typical sources: User action (as defined in the requirements)
Often used for: usability, efficiency, functionality

Growth scenarios
Characteristic: Something is added or changed.
Typical sources: Greater load, new features, technical migration, …
Often used for: Maintainability, scalability, portability, compatibility

Exploratory scenarios
Characteristic: Something “unforeseen” occurs.
Typical sources: (External/Partial) system failure, overload, incorrect use, …
Often used for: Reliability, security

Technical constraints Organisational constraints Legal constraints

• Hardware restrictions

• Platform restrictions

• Base frameworks

• Operations guidelines

• Programming guidelines

• Other technical restrictions

• Organisational structure

• Project size

• Methodology

• Budget

• Time

• Organisational standards

• Available Know-how

• Liability issues

• Data protection

• Verification obligations

• Audit security

• Regulatory specifications

• International legal matters

Source Context

Artefact  
Environment Stimulus Response 

Response measure

A case worker records the damage. 
With one click he opens the  
according screen and is finished 
within 3 minutes.

The number of users increases  
by 100% in one year. The system 
remains efficient and robust without 
personnel efforts.

A technical breakdown shuts 
down parts of the system lands-
cape (up to 30%). Customers do 
not experience downtimes.

Constraints
In addition to quality requirements, constraints are the most important drivers of architectural design.  
It is important todetermine which constraints have been overlooked, violated or are prospectively in danger 
of being violated.

2.

http://architektur-spicker.de



   Quality attributes and tradeoffs

Tradeoffs are ubiquitous when designing an architecture or reviewing one. Quality aspects of software  
cannot be optimised independently. The following diagram shows important quality attributes based on the 
ISO 25010 norm and depicts possible interdependencies.

During evaluation workshops

We look forward to your feedback: spicker@embarc.de

https://www.embarc.de/ 
info@embarc.de

https://www.sigs-datacom.de 
info@sigs-datacom.de

The Suitability of the Architecture (SA) is often evaluated in workshops as a scenario-based walkthrough (as seen in ATAM) – 
architectural approaches are discussed and analysed in the light of the most important drivers.

Gather scenarios
Brainstorming with stakeholders  
Deriving from documents 
(Individual) interviews with stakeholders

Evaluate scenarios 
according to priority

Architecture  
walkthrough
• Relevant solution details 
• Known problems 
• Approaches and gaps

Ask questions regarding the scenario
  Are the presented architectural approaches  
comprehensible and suitable? 
✓ Comprehensibility and focus

  Have all aspects of the scenario been discussed? 
✓ Missing approaches/Open items/Risks

  Which approaches are suboptimal in this context? 
✓ Tradeoffs 

  Are goals negatively affected by presented 
approaches? 
✓ Tradeoffs/Possibly risks

  Which difficulties may occur during implementation, 
delivery or operation? 
✓ Risks/ToDos

  Are important constraints violated? 
✓ Problems/Risks

Refine the scenario
See schema for quality scenarios (Page 3) 

Derive tasks/ToDos
• Focus on risks and issues
• Sort out responsibilities

Prioritise scenarios 
Dot voting

Simple consent

Criteria-based prioritisation

1.

2.

3.

b

a

c

 ToDo    ToDo  
 ToDo 

 Approach X 
 Approach Y 
 Concept A

 Risk  A 
 Risk  B 
 Open item 

 Tradeoff

Security

Is the system safe from attacks? 
Are data and functions protected 
from unauthorised access? …

Usability

IIs the software usage intuitive, easy 
to learn, attractive?

Users regard safety measures 
 as bothersome (e.g. password 
complexity, CAPTCHAs).

An open API promotes 
easy integration as well 
as vulnerabilities.

Reliability

Is the system available, robust, 
resilient? …

Long maintenance  
windows reduce availability

Maintainability

Can the software be easily changed, 
expanded, tested?  
(Can individual parts be reused) …

Compatibility

Does the software comply with stan-
dards, does it work well with external 
systems?

Efficient algorithms/solutions are often more 
complicated and therefore harder to understand.

Additional safety measures such as data  
encryption consume more resources.

Using specific UI features complicates the transfer  
to another platform (e.g. mobile).

Positive or negative effect  
on quality attribute

Higher availability and necessary  
redundancies aggravate consistency.

Functionality

Is the system functioning  
correctly/accurate, is the functionality 
adequate? …

Portability

Can the software be easily transferred 
to other target environments 
(e.g. other OS)?

Efficiency (performance)

Does the software have low latency, 
high throughput, a small footprint? …

Efficiency-increasing caches 
make data stale.

Exact calculations need more time 
and/or memory.

Standard solutions reduce effici-
ency, e.g. standard SQL instead of 
database-specific SQL.

Abstractions (e.g. layers)  
reduce the possibility of 
platform-specific optimisations.

Business priority / Technical risk

High / High
Focus in workshop!

High / Low
Builds trust, low architectural weight

Low / High
Risk-Transparency/weaken the response measure

http://architektur-spicker.de

4

d


